56 research outputs found

    Automatic Synthesis of Parsers and Validation of Bitstreams Within the MPEG Reconfigurable Video Coding Framework

    Get PDF
    Video coding technology has evolved in the past years into a variety of different and complex algorithms. So far the specifications of such standard algorithms have been done case by case, providing monolithic textual and reference software specifications, but without paying any attention to the possibility of further improvements of such monolithic standards. The MPEG Reconfigurable Video Coding (RVC) framework is a new ISO/IEC standard, currently under its final stage of development aiming at providing video codec specifications at the level of coding tools instead of monolithic descriptions. The possibility to select a subset of standard video coding algorithms to specify a decoder that satisfies application specific constraints is very attractive. However, such possibility to reconfigure codecs requires systematic procedures and tools capable of describing the new bitstream syntaxes of such new codecs. Moreover, it becomes also necessary to generate the associated parsers, capable of parsing the new bitstreams. This paper further explains the problem and describes the technologies used to describe new bitstream syntaxes. Additionally, the paper describes the methodologies and the tools for the validation of bitstream syntaxes descriptions as well as a systematic procedure for automatically synthesizing parsers from the bitstream description

    Automatic Synthesis of Parsers and Validation of Bitstreams Within the MPEG Reconfigurable Video Coding Framework

    Get PDF
    International audienceVideo coding technology has evolved in the past years into a variety of different and complex algorithms. So far the specifications of such standard algorithms have been done case by case, providing monolithic textual and reference software specifications, but without paying any attention to the possibility of further improvements of such monolithic standards. The MPEG Reconfigurable Video Coding (RVC) framework is a new ISO/IEC standard, currently under its final stage of development aiming at providing video codec specifications at the level of coding tools instead of monolithic descriptions. The possibility to select a subset of standard video coding algorithms to specify a decoder that satisfies application specific constraints is very attractive. However, such possibility to reconfigure codecs requires systematic procedures and tools capable of describing the new bitstream syntaxes of such new codecs. Moreover, it becomes also necessary to generate the associated parsers, capable of parsing the new bitstreams. This paper further explains the problem and describes the technologies used to describe new bitstream syntaxes. Additionally, the paper describes the methodologies and the tools for the validation of bitstream syntaxes descriptions as well as a systematic procedure for automatically synthesizing parsers from the bitstream descriptions

    A platform for mixed HW/SW algorithm specifications for the exploration of SW and HW partitioning

    Get PDF
    The increasing complexity in particular of video and multimedia processing has lead to the need of developing the algorithms specification using software implementations that become in practice generic reference implementations. Mapping directly such software models in platforms made of processors and dedicated HW elements becomes harder and harder for the complexity of the models and for the large choice of possible partitioning options. This paper describes a new platform aiming at supporting the mapping of software specifications into mixed SW and HW implementations. The platform is supported by profiling capabilities specifically conceived to study data transfers between SW and HW modules. Such optimization capabilities can be used to achieve different objectives such as optimization of memory architectures or low power designs by the minimization of data transfers

    Validation of bitstream syntax and synthesis of parsers in the MPEG Reconfigurable Video Coding framework

    Get PDF
    International audienceVideo coding technology has evolved in the past years into a variety of different and complex algorithms. So far the specification of such standard algorithms has been done case by case providing monolithic textual and reference SW specifications, but without any attention on commonalities and the possibility of incremental improvements or modifications of such monolithic standards. The MPEG Reconfigurable Video Coding (RVC) framework is a new ISO standard, currently under development aiming at providing video codec specifications at the level of library functions instead of monolithic algorithms. The possibility to select a subset of standard coding algorithms to specify a decoder that satisfies application specific constraints is very attractive. However, such possibility to reconfigure codecs requires systematic procedures and tools capable of describing the new bitstream syntaxes of such new codecs. Moreover, it is also necessary to generate the associated parsers which are capable to parse the new bitstreams because they are not available "a priori" in the RVC library. This paper further explains the problem and describes the technologies used to describe new bitstream syntaxes within RVC. In addition, the paper describes the methodology and the tools for the validation of bitstream syntaxes descriptions as well as an example of systematic procedures for the direct synthesis of parsers in the same data flow formalism in which the RVC library component are implemented

    Reconfigurable media coding: a new specification model for multimedia coders

    Get PDF
    Multimedia coding technology, after about 20 years of active research, has delivered a rich variety of different and complex coding algorithms. Selecting an appropriate subset of these algorithms would, in principle, enable a designer to produce the codec supporting any desired functionality as well as any desired trade-off between compression performance and implementation complexity. Currently, interoperability demands that this selection process be hard-wired into the normative descriptions of the codec, or at a lower level, into a predefined number of choices, known as profiles, codified within each standard specification. This paper presents an alternative paradigm for codec deployment that is currently under development by MPEG, known as Reconfigurable Media Coding (RMC). Using the RMC framework, arbitrary combinations of fundamental algorithms may be assembled, without predefined standardization, because everything necessary for specifying the decoding process is delivered alongside the content itself. This side-information consists of a description of the bitstream syntax, as well as a description of the decoder configuration. Decoder configuration information is provided as a description of the interconnections between algorithmic blocks. The approach has been validated by development of an RMC format that matches MPEG-4 Video, and then extending the format by adding new chroma-subsampling patterns

    A HW/SW codesign platform for Algorithm-Architecture mapping

    Get PDF
    The increasing complexity of signal processing algorithms has lead to the need of developing the algorithms specifications using generic software implementations that become in practice the reference implementation. This fact can be particularly observed in the field of video and multimedia processing where reference software is the main normative reference. Adapting the algorithms specified by such software models into architectures composed by processors and dedicated HW elements becomes a very resource consuming task for the complexity of the models and for the large choice of possible partitioning options. This paper describes a new platform aiming at supporting the adaptation of algorithms specified by generic non optimized software specifications into mixed SW and HW implementations. The platform is supported by profiling capabilities specifically developed to study data transfers between the SW and the HW modules. Such profiling and optimization capabilities can be used to achieve different objectives in the algorithm architecture adaptation process such as optimization of memory architectures or low power designs by the minimization of data transfers

    Reconfigurable Video Coding : Objectives and Technologies

    Get PDF
    The main objective of the MPEG Reconfigurable Video Coding (RVC) standard is to establish a framework for a more flexible usage of standard video coding technology. The framework not only supports multiple standards and new coding configurations, but also provides an incremental and modular approach to innovation in video compression development and design. This paper provides an overview of the main objectives of RVC, standard accompanied with a presentation of the components of the framework for both normative parts and supporting tools useful for the final implementation of RVC codecs. These elements include: the Video Tool Library (VTL), the new standard RVC–CAL language used for the specification of the library, the Bitstream Syntax Description (BSD) used for the specification of the compressed bitstreams, as well as the Functional unit Network Description (FND) that constitutes the specification of a modular library. Technologies and tools that support the RVC standard are also briefly introduced

    Overview of the MPEG Reconfigurable Video Coding Framework

    No full text
    International audienceVideo coding technology in the last 20 years has evolved producing a variety of different and complex algorithms and coding standards. So far the specification of such standards, and of the algorithms that build them, has been done case by case providing monolithic textual and reference software specifications in different forms and programming languages. However, very little attention has been given to provide a specification formalism that explicitly presents common components between standards, and the incremental modifications of such monolithic standards. The MPEG Reconfigurable Video Coding (RVC) framework is a new ISO standard currently under its final stage of standardization, aiming at providing video codec specifications at the level of library components instead of monolithic algorithms. The new concept is to be able to specify a decoder of an existing standard or a completely new configuration that may better satisfy application-specific constraints by selecting standard components from a library of standard coding algorithms. The possibility of dynamic configuration and reconfiguration of codecs also requires new methodologies and new tools for describing the new bitstream syntaxes and the parsers of such new codecs. The RVC framework is based on the usage of a new actor/ dataflow oriented language called CAL for the specification of the standard library and instantiation of the RVC decoder model. This language has been specifically designed for modeling complex signal processing systems. CAL dataflow models expose the intrinsic concurrency of the algorithms by employing the notions of actor programming and dataflow. The paper gives an overview of the concepts and technologies building the standard RVC framework and the non standard tools supporting the RVC model from the instantiation and simulation of the CAL model to software and/or hardware code synthesis

    Reconfigurable Video Coding on multicore : an overview of its main objectives

    Get PDF
    International audienceThe current monolithic and lengthy scheme behind the standardization and the design of new video coding standards is becoming inappropriate to satisfy the dynamism and changing needs of the video coding community. Such scheme and specification formalism does not allow the clear commonalities between the different codecs to be shown, at the level of the specification nor at the level of the implementation. Such a problem is one of the main reasons for the typically long interval elapsing between the time a new idea is validated until it is implemented in consumer products as part of a worldwide standard. The analysis of this problem originated a new standard initiative within the International Organization for Standardization (ISO)/ International Electrotechnical Commission (IEC) Moving Pictures Experts Group (MPEG) committee, namely Reconfigurable Video Coding (RVC). The main idea is to develop a video coding standard that overcomes many shortcomings of the current standardization and specification process by updating and progressively incrementing a modular library of components. As the name implies, flexibility and reconfigurability are new attractive features of the RVC standard. Besides allowing for the definition of new codec algorithms, such features, as well as the dataflow-based specification formalism, open the way to define video coding standards that expressly target implementations on platforms with multiple cores. This article provides an overview of the main objectives of the new RVC standard, with an emphasis on the features that enable efficient implementation on platforms with multiple cores. A brief introduction to the methodologies that efficiently map RVC codec specifications to multicore platforms is accompanied with an example of the possible breakthroughs that are expected to occur in the design and deployment of multimedia services on multicore platforms

    Reconfigurable media coding: a new specification model for multimedia coders

    Get PDF
    Multimedia coding technology, after about 20 years of active research, has delivered a rich variety of different and complex coding algorithms. Selecting an appropriate subset of these algorithms would, in principle, enable a designer to produce the codec supporting any desired functionality as well as any desired trade-off between compression performance and implementation complexity. Currently, interoperability demands that this selection process be hard-wired into the normative descriptions of the codec, or at a lower level, into a pre-defined number of choices, known as profiles, codified within each standard specification. This paper presents an alternative paradigm for codec deployment that is currently under development by MPEG, known as Reconfigurable Media Coding (RMC). Using the RMC framework, arbitrary combinations of fundamental algorithms may be assembled, without pre-defined standardization, because everything necessary for specifying the decoding process is delivered alongside the content itself. This side-information consists of a description of the bitstream syntax, as well as a description of the decoder configuration. Decoder configuration information is provided as a description of the interconnections between algorithmic blocks. The approach has been validated by development of an RMC format that matches MPEG-4 Video, and then extending the format by adding new chroma-subsampling patterns
    • …
    corecore